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A new way to conpress an opticalpulse in a single-mode fiber is presented in

this paper. By

nonlinearity of

wavelength beam

the use of the cross phase modulation (CPM) effect causedby the

the optical fiber, a shepherd pulse propagating on a different

in a wavelength division multiplexed (w) single-mode fiber systm

4

can lx used to enhance the pulse compressionof a co-propagatingprimazy pulse. ~

Although CPMwill not cause energy to Ix?exchanged among the beams, but the pulse

shapes on these beams can be alteredsignificantly. For exanple,a one milliwattpeak

power Iopsprt ipulseon a 9iv~ wavelen9ti beam mybe comressed bya factor of

as much as 25 when a co-propagating 10 PS shepherd pulse of peak power of 49

milliwattson a different wavelength beam is similarlycompressed. Results of a

systematic study on this effect are presented in

the primaw pulse on a givenwavelength beam has

milliwatt it can still be compressed by the same

this paper. ~rthexmore, even when

a peak power of much less than one

compression factoras a co-

propagating shepherd pulse of peak power much larger than one milliwatt on a different
.

wavelength beam as it undergoes compression. Through CPM, co-propagatingpulses on

separate beams appear to share the nonlinear effect induced on any one of the pulses

on separate beams.
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I. Introduction

In spite of the intrinsically small value of the

nonlinearity coefficient in fused silica, due to low loss and

long interaction length, the nonlinear effects in optical

fibers made with fused silica cannot be ignored even at

relatively low power levels [1]. This nonlinear phenomenon

in fibers has been used’successfully to generate optical

solitons [21, to compress optical wls-

energy from a pump wave to a Stokes wave

gain effect [41, to transfer energy from

[3], to transfer

through the Raman

a pump wave to a

counter-propagating Stokes wave through the Brillouin gain

effect [51, to produce four-wave mixing [61 and to

dynamically shepherd pulses [7].

In a WDM system, the cross phase modulation (CPM)

effects [8,91 caused by the nonlinearity of the optical fiber #

are unavoidable. These CPM effects occur when two or more

optical beams co-propagate simultaneously and affect each

other through the intensity dependence of the refractive

index. This CPM phenomenon can be used to produce an

interesting pulse shepherding effect to align the arrival

time of pulses which are otherwise misaligned. This same CPM

effect can also be used to produce highly compressed pulse on

a different wavelength beam.

,



The usual soliton-effect compressor [3,10-131, which

makes use of higher-order solitons supported by fiber as a

result of interplay between self-phase modulation (SPM) and

anomalous group-velocity dispersion (G~), is well know. It

is found here that the interplay between CPM and GVD may also

provide similar pulse compression effect. The significant

difference is that pulse compression can take place for

pulses on a different wavelength beam. This means that the

high power pulse on one’wavelength beam may be used to

provide high compression to a low power pulse on another

wavelength beam.

The purpose of this paper is to provide detailed

simulation results on this new type of pulse compression

technique.

3

.
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II. Formulation of the Problem

The fundamental equations governing M numbers of co-

propagating waves in a nonlinear fiber including the CPM

phenomenon are the coupled nonlinear Schrodinger equations

[7,14]:

aAj 1 aAj 1 1 a2Aj

—+— —+— ~jAj = —P2—
az Vgj at 2 2 at2

M

-7j(lAj12 + 2 ~ lAm]2)Aj

m#j

(j = 1,2,3, ●. ..*M ) (1)

Here, for the jth wave, Aj(z,t) is the Shwly-varying

amplitude of the wave, Vgj, the group velocity, p2j, the

dispersion coefficient ( ~2j = dvgj-l/d@ ), ajt the absorption

coefficient, and

n2 @j

Yj =
c Aeff

(2)

is the nonlinear index coefficient with ~ff as the effective

core area and n2 = 3.2 x 10-16 cm2/W for silica fibers, 6)j is

the carrier frequency of the jth wave, c is the speed of

light, and z is the direction of propagation along the fiber.

,
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Introducing the normalizing coefficients

t-(z/vgl)

‘T=
To

dlj = (Vgl-Vgj)/VglVgj ,

~ = z/LL)I,

LDI = To2/i~211,

and setting

Uj(’t,~) = (Aj(2,t) /~poj) exP(ajLm&/2)

Lmj . l/(’fjpOj)

LDj = l’02/l~2jl

gives

&j s9n(p2j)bl t12uj dlj auj

i— = — - i— LD1 —

at 2LDj &2 To a

●

LD1
-— [exp(-CtjLm~) luj12 + 2 ~ eW(-%nLDl~) luxn12]uj

LNLj m#j
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(j = 1,2,3, .....M )

Here, To is the pulse width, Poj is the incident optical

of the jth beam, and dlj, the walk-off parameter between

1 and beam j, describes how fast a given pulse in beam j

passes through the pulse in beam 1. In other words, the

walk-off length is

LW(lj) = To/Idljl.

(6)

power

beam

(7)

So, @(lj) is the

(say, in beam j)

pulse in beam 1.

distance for which the faster moving pulse

completely walked through the slower moving

The nonlinear interaction between these two

optical pulses ceases to occur after a distance Lw(lj). For

cross-phase modulation (CPM) to take effect significantly,

the group-velocity mismatch must be held

It is also noted from Eq. (6) that

to near zero.

the summation term

in the bracket representing the cross-phase modulation (CPM)

effect is twice as effective as the self phase modulation

(SPM) effect for the same intensity. This means that the

nonlinear effect of the fiber medium on a beam may be

enhanced by the co-propagation of another beam with the same

group velocity.
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III. Numerical Solution

Equation (6) is a set of simultaneous coupled nonlinear

Schrodinger equations which may be solved numerically by the

split-step Fourier method, which was used successfully

earlier to solve the problem of beam propagation in complex

fiber structures, such as, the fiber couplers [15], and t.o

solve the thermal blooming problem for high energy laser

beams [161. According to this method, the solutions may be

advanced first using only the nonlinear part of the

equations. And then the solutions are allowed to advance

using only the linear part of Eq. (6). This forward stepping

process is repeated over and over again until the desired

destination is reached. The Fourier transform is

accomplished numerically via the

Transform Technique. Due to the

pulse width, a mesh size of 2048

well-known Fast Fourier

large dynamic range of the

with At = 0.01 was used.

Using the above approach, the evolution of all the

pulses on all the co-propagating WDM beams as they propagate

down the fiber may be obtained. It was through these

numerical computations that we discovered the interesting

pulse shepherding and beam compression effects [7]. As

expected these effects only exist when group-velocity

mismatch for the interested beams is negligible. In other

words, there is no walk-off [7,14] among the interested
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beams. This can be accomplished through proper tailoring of

the dispersion characteristics of a single-mode fiber [17].

Consider now the evolution of two single soliton pulses

on two co-propagating beams whose operating wavelengths are ,

separated by & > 4 nm. For this case, the four wave mixing

effect is negligible. Let us label the first pulse as the

primary (P) pulse and the second pulse as the shepherd (S)

pulse. The soliton number Nj for the pulse on the jth beam

is defined as

Nj2 = Lpj/~Lj.

Furthermore, we assume that there is negligible walk-off,

i.e.,

dlj = walk-off parameter between beam illand beam ##j

= Vgl - Vgj = 0,

and there is no loss, I.e.,

CXj = attenuation or absorption of beam j in fiber

= o.

The neglect of fiber loss is justified since the fiber

lengths typically employed are only a small fraction of the

absorption length (CXjLC< 1) . Strictly speaking, for
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multiple interacting beams, there is no condition under which

solitons may exist even if the fiber is lossless. However,

numerical simulation shows that significant pulse compression

still exists for these interacting pulses.



Iv. Discussion of the Results

e are all m ancxnalous

Qiswersion rea-

For solitons propagating on a single beam in silica

fibers, pulse compression is experienced when N, the soliton

order, is larger than 1 [8]. This effect is due to the

interaction of SPM (Self-Phase Modulation) and anomalous GVD

(Group-Velocity Dispersion) during propagation. When two

aligned pulses, one called the primary pulse and the other

called the shepherd pulse, on two different wavelength beams

co-propagate in a single-mode silica fiber, compression of

both pulses occurs due to the interaction of CPM (Cross-Phase

Modulation) of these two pulses and anomalous GVD during

propagation.

A. Initial pulse widths are identical

Computer simulation results are shown in Fig. 1 through

Fig. 4 for co-propagating pulses with identical initial

pulse-width. Both pulses are in the anomalous GVD regime.

In Fig. 1 the maximum amount of compression experienced by

both pulses, the primary (P) pulse and the shepherd (S)

pulse, are plotted against the soliton order N~ for the

shepherd (s) pulse for various cases of the Primary (p) pulse

with the soliton order Np. The amount of compression is

10
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expressed by the compression factor Fc, which is defined as

[3]

FC = Tm / TcoMP ,

where the subscript FWHM means full width at half maximum for

the pulse and the subscript COMP means FWHM of the compressed

pulse. It is seen that, in the absence of the shepherd (S)

pulse, i.e., Ns = O, the primary (P) pulse under-goes the

well-known soliton compression process for a single soliton

pulse for soliton number N > 1. As expected, the primary (P)

pulse retains its shape when Np = 1. But, when a co-

propagating shepherd (S) pulse is present, both pulses

undergo the same compression even if Np is not equal to NS or

if Ns c 1 or if Ns c< 1. Furthermore, the amount of

compression is always larger than that achievable by a single

stand-alone pulse.

For N~ > Np, the shepherd pulse helps to compress the

primary pulse further, especially when soliton number for the

primary pulse is near unity. For example, as Ns varies from

1 to 7, the pulse width of the NP = 1 primary pulse can be

compressed by the shepherd pulse by a factor of 27, while the

pulse width of the Np = 2 primary pulse will be compressed by

a factor of 7. For an Np = 5 primary pulse, its pulse width

will be reduced by a factor of only 2.2 as NS varies from 1

to 7. In other words, the weaker is the intensity of the
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primary pulse the more its pulse width will be compressed by

the presence of a co-propagating high intensity shepherd

pulse. Figure 2 gives an illustration of the evolution of

the pulse shapes of the primary and shepherd pulses for the

case where Ns =7andNP=l.

For Ns < Np, the shepherd pulse still helps to compress

the primary pulse further, but the effect is much more

moderate. For example, ’as NS varies from O to 2, the pulse

width of the Np = 2 primary pulse is compressed by a factor

of 2.4, while the pulse width of the Np = 5 primary Pulse

will be compressed by a factor of only 2 as Ns varies from O

to 5. This means that to effectively enhance the pulse

compression of a primary pulse, higher intensity shepherd

pulse must be used. Figure 3 shows evolution of the pulse

shapes of the primary and shepherd pulses for the case where
.

Ns =2andNP=5.

It is known that a single pulse with N < 1, no pulse

compression will occur. Hence a Np < 1 Primary Pulse

traveling alone or a N~ < 1 shepherd pulse traveling alone

will.not experience any pulse compression. This is no longer

true when these pulses co-propagate in the fiber. Even when

NP + N~ < 1, a slight pulse compression may still be observed

for both the primary pulse and the secondary pulse. This is

caused by the nonlinearity of the fiber medium. One also

notes that when Np << I and NS > 1, pulse compression will be “
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experienced by both the primary and the shepherd pulses.

Same degree of pulse compression will occur on the primary

pulse even when Np << 1. The degree of pulse compression for

the primary pulse or the shepherd pulse is governed by the

N~ > 1 shepherd pulse.

Figure 4 shows the normalized optimum fiber length

zopt/zOp for the primary pulse as a function of Ns for various

fixed values of Np, where zopt is the optimum fiber length in .

kilometers for the primary or shepherd pulse when it

experiences maximum pulse compression and ZOP = (n/2)L~.

Here, L~ is dispersion length for the primary pulse defined

in Eq. (5). It is of interest to note that zopt for the

primary pulse occurs at the same location or very near the

same location as that for the shepherd pulse. This means

that maximum pulse compression for the primary pulse and that

for the shepherd pulse occur at the same location and at the

same time. For high values of NS, this normalized optimum

fiber length can be much smaller than unity, indicating that

the maximum pulse compression could occur at a length many

times smaller than the dispersion length. Using the

following physical parameters as an example:

132 = dispersion coefficient = -2.0 ps2/km

L1 = operating wavelength of beam #1 = 1.552 pm

L2 = operating wavelength of beam #2 = 1.548 pm
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Y=

PO =

a=

=

Vg =

dlj =

=

T() =

one has

nonlinear index coefficient = 20 W-1km-1

incident power of each beam = 1 mW

attenuation or absorption of each beam in fiber

o dB/km

group velocity of the beam = 2.051147 x 108 m/see

walk-off parameter between beam #1 and beam #j

Vgl “ Vgj = O (no walk-off)

pulse width = 10 PS,

●

L~ = 50 km.

Take

from

in a

the case of Np = 5 and %. = 7, one finds %x/zop = o“od
.

Fig. 4. This means maximum pulse compression can occur

fiber with length of only 2.0 km long. For higher

values of Np and/or Ns, this length can be made even shorter.

B. Initial pulse widths are not identical

We have also investigated the case where the pulse

width of the primary pulse and that of the shepherd pulse are

not identical. Let us consider the case where a primary

pulse has an initial intensity of Np = 1 and a shepherd pulse

has an initial intensity of Ns = 9. It was assumed that the

pulse width of the shepherd pulse is varied from the same to

several times (3-5 times) wider than that of the primary
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pulse. Our computer simulation shows that the primary pulse

is similarly compressed for all the above cases. In other

words, varying the pulse width of the shepherd pulse does not

appear to affect the minimum pulse width achievable for the

primary pulse although the distance required to gain this

minimum pulse width for the primary is increased as the pulse

width of the shepherd pulse is increased. The amount of

pulse compression for the primary pulse is governed by the

intensity of the accomp%ying shepherd pulse.

It is observed that, for the broad shepherd pulse, only

the central portion of the shepherd pulse that overlaps the

primary pulse is significantly affected and undergoes

compression.

This simulation shows that the broader shepherd pulse

with high intensity appears to enhance (or increase) the

strength of the nonlinear coefficient of the fiber medium for

the primary pulse so as to enhance the pulse compression

effect experienced by the primary pulse. This means that

there is a way to dynamically increase the nonlinear effect

of the medium through the addition of a broad, high intensity

shepherd pulse. The amount of enhancement and the duration

are controlled by the intensity and the pulse width of the

shepherd pulse. The nonlinear effect of the medium is

transferred to the primary pulse through the CPM effect.
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Let us now investigate the case where the intensity of

the narrow shepherd pulse is much higher than that of the

broad primary pulse. In this simulation, the initial

intensity of the narrow shepherd pulse is taken to be Ns = 9

and that of the broad primary pulse is Np < 1. Both pulses

undergo compression. The degree of compression is mostly

governed by the high intensity narrow shepherd pulse. For

example, at the maximum compression distance, the shepherd

pulse is compressed by a factor of approximately 16, while a

narrow pulse with the same compressed pulse width as that of

the shepherd pulse appears to have been generated on top of

the broad small intensity primary pulse which appears as the

pedestal for the narrow pulse. .

It is noted here that what has been described above has

practical significance. This scheme provides a practical

pure optical way of generating very narrow bits on different

wavelength streams for the bit-parallel data format.

. . .
erd mlse n ncg211al on and w?2&KQKy

Ion recflme

It is known that

a fiber occurs because

pulse compression of a single pulse

of the interaction of the nonlinear

in

.

effect and the anomalous GVD effect [8]. This interaction

also gives birth to the possible existence of a soliton pulse

withN = 1. The above simulation results show that when a
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shepherd pulse is added as a co-propagating companion primary

pulse, enhancement of pulse compression of the primary pulse

is observed. It is of interest to learn if this pulse

compression enhancement of the primary pulse still exists if

the shepherd pulse is launched on a beam whose wavelength

falls in the normal GVD regime. This computer experiment has

been carried out. In this experiment NP is set to unity with .

P2p = -2 while N~ is set to 9 with ~2~ = +2. It is expected

that without the shepherd pulse, the primary pulse is a

soliton pulse which will retain its shape without pulse

compression or pulse spreading as it propagates down the

fiber. Also, without the primary pulse, the high amplitude

shepherd pulse in the normal dispersion regime is expected to

propagate without experiencing pulse compression. When both

of these pulses copropagate on two separate

shepherding

observed.

If NP

the primary

large pulse

effect is observed but no pulse

beams, pulse

compression is

and N~ are both set to be 9, the high amplitude of

pulse in the anomalous dispersion regime produces

compression, but the degree of pulse compression

(i.e., the narrowness of the compressed pulse) is not

influenced by the presence of the high amplitude shepherd

pulse in the normal dispersion regime. On the other hand, a

very significant dip appears in the center of the shepherd

pulse in the normal dispersion regime breaking the original

single shepherd pulse into two pulses. This is very



18

different than the case where both primary and shepherd

pulses are in the anomalous dispersion region. There both

pulses undergo compression.

tx~ ~ulse are all In normal dis~ersiora

Z%u.iQQ

When

dispersion

both shepherd and primazy pulses are in the normal

region, no pulse compression occurs. Pulses tend

to congregate towards region of higher induced index of

refraction.

S~arv of the above dlscussio~
.

The interaction between two separate pulses

copropagating on two different wavelength beams in a single

mode fiber is studied in detail. It is shown that the cross

phase modulation (CPM) effect can be use effectively to

provide another way to generate pulse compression in the

anomalous dispersion region of a single mode fiber. Due to

the nonlinearity of the fiber medium, a slight pulse

compression still occurs when the sum of the soliton numbers

for the two beams is less than unity.

A more complex interaction is observed when one of the

pulses is propagating in the normal dispersion region. The

pulse in the normal dispersion region is seen to be broken up

.

.
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by the compression of the high soliton number pulse in the

anomalous dispersion region. It also appears that if the

pulse in the normal dispersion region is very broad compared

with the high intensity narrow pulse in the anomalous

dispersion region, a dark soliton-like pulse can be generated

on top of the broad pulse in the normal dispersion region

while the pulse in the anomalous dispersion region undergoes

the usual pulse compression. Figure 5 is introduced to

illustrate the evolution of the two propagating pulses when

they exist in various different combinations of the

dispersion regions.

the

all

It should be noted that the dispersion region in which

beam resides (i.e., where the beam wavelength resides) is

important in determining to behavior of the pulse on that

beam even in the presence of a copropagating pulse on a

different wavelength beam. The copropagating shepherd pulse, .

through the cross-phase modulation effect due to the Kerr

index nonlinearity, provides an additional phase retardation

to the primary pulse as it travels down the fiber. In other

words, additional frequency chirp (in addition to that caused

by self-phase modulation) is added to the primary pulse by

the copropagating shepherd pulse.

This ‘chirped’ primary pulse is acted upon by the

fiber’s dispersion to yield the expected behavior. For

example, if the primary pulse is on a beam whose wavelength

.
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is in the anomalous dispersion region (negative GVD region)

and if the ‘chirp’ caused by self- and cross-modulation

effect is high enough, the leading half of the pulse

containing the lowered frequencies, will be retarded, while

the trailing half, containing the higher frequencies, will be

advanced, and the primary pulse will tend to collapse upon

itself resulting in

(See Fig. 5 (B) and

pulse narrowing or pulse compression.

(c).)

On the other hand, if the primary pulse is on a beam

whose wavelength is in the normal dispersion region (positive .

GVD region), the presence of a copropagating shepherd pulse

on a different wavelength beam induces a dark-soliton-like

behavior for the primary pulse, confirming the fact that the

dispersive region in which the wavelength of the beam resides
.

determines the propagation characteristic of that pulse. In

contrast with the bright soliton case, dark soliton possesses

a nontrivial phase profile which is a function of time,

resulting in a rapid dip in the intensity of a broad pulse.

(See Fig. 5 (A) and (D).)

Investigation was also carried out for the interaction

of pulses on more than two beams. As many as ten

simultaneously propagating pulses on ten separate beams, with

one carrying the shepherd pulse, were used. It was found

that a single large amplitude shepherd pulse could similarly

and simultaneously affect the other nine small amplitude
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pulses. Evolution of each of the small amplitude pulses

depended mainly on the interaction of that pulse with the

large amplitude shepherd pulse according to the manner

discussed above for the two beam interaction case. Through

CPM, co-propagating pulses on separate beams appear to share ●

the nonlinear effect induced on any one of the pulses on

separate beams.

This investigation shows that for a wavelength division

multiplexed (WDM) system, one shepherd pulse can cause the

compression of all the other wavelength pulses, thereby,

improving their pulse widths as well as the separation of

different pulses. Furthermore, since the longer wavelength

pulses are compressed at rate different from the shorter

wavelength pulses, one may conceivably make all pulses have

the same time width which may make detection and

discrimination easier to accomplish.

v. Conclusion

A new way to compress bright or dark pulse is found.

The nonlinear cross phase modulation (CPM) effect is used to

accomplish this on two or more co-propagating pulses on two

or more wavelength division multiplexed (WDM) beams in a

single-mode fiber. Numerical simulation shows that the

effectiveness of compression is similar to that displayed by

a single higher order soliton pulse propagating in a single
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beam. That this CPM effect can be used to compress pulses

whose amplitudes are much less than unity (the traditional

soliton number for a single beam) as long as a co-propagating

pulse on a WDM beam undergoes compression, should be noted.
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re caQLiQns

Figure 1. Compression factor (Fc) for varies soliton values

(Np) of a primary pulse (P) as a function of soliton values

(N~) of a co-propagating shepherd pulse (S). The compression

factor for the primary pulse is the same as the compression

factor for the shepherd pulse. Initial pulse width for the

primary pulse and that for the shepherd pulse are identical. ,

The compression factor FC is defined as the ratio between the

full width at half maximum for the initial uncompressed pulse

and that for the final compressed pulse.

Figure 2. ~ illustration of the evolution of the shepherd

pulse and the primary pulse for N~ = 7 and NP = 1. Both

pulses are in the anomalous dispersion region. Power

amplitude, IU12, is plotted in each frame. Highest power

amplitude in each frame is normalized to unity. The initial

power amplitude for the shepherd pulse is 49 (NS = 7) and

that of the primary pulse is 1 (Np = 1). The final power

amplitude for the shepherd pulse is 71.2 and that of the

primary pulse is 2.15. The number along the horizontal

abscissa refers to the normalized distance from the starting

point of the fiber; in other words, when the normalized

distance is 3, the distance is 3(zOpt/zO)zO/5 where Z. =

(z/2)LDs and LDs is the dispersion length of the shepherd

pulse. zOPt is the optimum fiber length in kilometers for the

shepherd pulse when it experiences maximum pulse compression.
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Note that both pulses with different initial soliton numbers

are similarly compressed and the degree of compression for

both pulses is higher than that experienced by each pulse

when propagating alone. The dispersion coefficients, ~z~ and

P2P, have units of (ps2/km). All other numbers in the figure

are dimensionless.

Figure 3. w illustration of the evolution of the primary

pulse and the shepherd pulse for N~ =2andNP=5. Both

pulses are in the anomalous dispersion region. Power

amplitude, IU12, is plotted in each frame. Highest power

amplitude in each frame is normalized to unity. The initial

power amplitude for the shepherd pulse is 4 (NS = 2) and that
●

of the primary pulse is 25 (Np = 5) . The final power

amplitude for the shepherd pulse is 6.96 and that of the

primary pulse is 35.1. The number along the horizontal

abscissa refers to the normalized distance from the starting

point of the fiber; in other words, when the normalized

distance is 3, the distance is 3(zOpt/zO)zO/5 where ZO =

(x/2)LD~ and LI)~is the dispersion length of the shepherd

pulse. zOPt is the optimum fiber length in kilometers for the

shepherd pulse when it experiences maximum pulse compression.

Note that both pulses with different initial soliton numbers

are similarly compressed and the degree of compression for

both pulses is higher than that experienced by each pulse

when propagating alone. The dispersion coefficients, ~z~ and

.
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~zP, have units of (ps2/km). All other numbers in the figure

are dimensionless.

Figure 4. Normalized optimum fiber length as a function of

N~ for various fixed values of Np. ZO = (TC/2)LD~and LD~ is

the dispersion length of the shepherd pulse. zoPt is the

optimum fiber length in kilometers for the shepherd pulse

when it experiences maximum pulse compression.

Figure 5. Evolution of two propagating pulses in various

different dispersion regions. Initial pulse amplitude of

primary pulse (pulse 1) is Np = 0.1 and initial pulse

amplitude of shepherd pulse (pulse 2) is N~ = 3. Initial

pulse width of primary pulse (pulse 1) is 3 times the initial

pulse width of shepherd pulse (pulse 2).

(A) Primary pulse 1 and shepherd pulse 2 are both in the

normal dispersion region (P2 = +2) .

(B) Primary pulse 1 and shepherd pulse 2 are both in the

anomalous dispersion region (B2 = -2).

(C) Primary pulse 1 is in the

(P2 = -2) and shepherd pulse 2

region (P2 = +2) .

(D) Primary pulse 1 is in the

+2) and shepherd pulse 2 is in

region (~z = -2).

anomalous dispersion region

is in the normal dispersion

normal dispersion region (P2 =

the anomalous dispersion

.
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Power amplitude, Iulz, is plotted in each frame. Highest

power amplitude in each frame is normalized to unity. The

initial power amplitude for the shepherd pulse is 9 (NS = 3)

and that of the primary pulse is 0.01 (NP = 0.1) . The final

power amplitude for the shepherd pulse is (A)=6.59, (B)=l.4.8,

(C)=6.59, (D)=14.8 and that of the primary pulse is

(A)=O.0116, (B)=O.0317, (C)=O.019S, (D)=O.0121. The number

along the horizontal abscissa refers to the normalized

distance from the starting point of the fiber; in other

words, when the normalized distance is 3, the distance is

3(zOpt/zO)zO/5 where Z. = (x/2)LDs and LD~ is the dispersion

length of the shepherd pulse. zopt is the optimum fiber

length in kilometers for the shepherd pulse when it

experiences maximum pulse compression. The dispersion

coefficients, P2S and flzp,have units of (ps2/km). All other

.

numbers in the figure are dimensionless.

●
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